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High temperature creep behaviour of 
nearly stoichiometric alumina spinel 
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Creep behaviour of nearly stoichiometric spinel, (AI 2 03 )n MgO, n = 1.1, is investigated 
for compression axis [0 0 1], at temperatures 0.77 to 0.83 Tm and constant loads 88.2 
to 117.6 MPa. Experimental observations, including the mechanical creep law and the 
dislocation substructures as imaged by TEM and Berg-Barrett X-ray topography support 
the following picture: { 1 0 0} (1 1 0) slip is activated in the very early creep stage, while 
no evidence for { i  1 1} is found; on the other hand {1 1 1} slip planes are observed 
for stress orientation [1 1 0], in agreement with Schmid's law. (ii) When in edge orien- 
tation slip dislocations become sessile by pure climb splitting. Their dissociation plane 
has been determinated unambiguously and observed to be perpendicular to their 
Burgers vector. As a result, it is suggested that slip should be inhibited and further creep 
should occur by pure climb strain only. This expected "cl imb-creep" accounts for 
experimental rates and, tentatively, for their dependence on stoichiometry n since the 
latter is observed to change only pre-exponential terms, the creep energies being much 
the same whatever the value of n. 

1. Introduction 
The plasticity of  alumina spinel solid solutions, 
(A12 O3)n MgO, raises the basic problem of {1 1 1 } 
(1 1 0) "metallic" slip versus {1 1 0}(1 1 0) "ionic" 
slip in oxide crystals, since it has been claimed 
[1-4]  that both could be produced in this system, 
depending on the stoichiometry or molar ratio, n. 
While crystals with n ~- 2 are relatively easy to 
deform [2, 3, 5] ,  and show clearly a {1 1 0}(1 1 0) 
slip, the deformation behaviour of stoichiometric 
crystals (n = 1) is much less documented owing 
to their difficult growth and the quite strong re- 
sistance they oppose to plastic shear, being brittle 
up to at least 0.75Tin ( T  m = 2408K).  Single 
crystal data have been limited, for n = 1, to 
constant strain rate compression tests, performed 
at T>~O.8Tm in two orientations only, both 
favouring a {1 1 1} (1 1 0) slip. This slip has thus 
been shown at low strains (smaller than a few per 
cent) by Radford et  al. [2] by etch-pitting, for a 

Schmid factor ratio (SFR) on (1 1 1) versus (1 1 0) 
of 0 .41/0 .25= 1.64, and by Mitchell e ta l .  [4] by 
slip line and electron microscopy observations, for 
a SFR of 0.5/0.35 = 1.43 in the range 0.86 to 
0.90 Tin. From these data, it is stated that {1 1 1 } 
slip would characterize the stoichiometry n = 1. 
The latter authors attribute the high strength of  
n = 1 crystals to a large Peierls force on {1 1 1} 
planes, assuming a still higher one to exist on 
{1 1 0} planes; the transition to {1 1 0} slip as n 
increases from 1 to 2 would then follow from a 
steeper hypothetic lowering of  Peierls barriers on 
{1 1 0} than on {1 1 1 } planes, owing to the dif- 
fusion of the excess cation vacancies. 

We present here a somewhat different picture 
based on the creep behaviour of  nearly stoichio- 
metric crystals, n - ~ l . 1 ,  stressed along [001]  
which favours {1 1 0} (1 TO) slip (SFR, on {1 1 1} 
versus {1 ]- 0}, is 0.41/0.5 = 0.82), at temperatures 
between 0.77 and 0.83 Tin. The mechanical creep 
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law, and the dislocation substructures have been 
investigated by transmission electron microscopy 
(TEM) and Berg-Barrett X-ray topography (BBT). 
In the course of this investigation, it has b e e n  
made possible to determine for the first time un- 
ambiguously the dissociation plane of slip dis- 
locations, and to show that they dissociate in a 
sessile way, normally to their Burgers vector, in 
the early stage of creep. Consequently, the actual 
dissociation width has been obtained. Other 
information on active slip planes, which are found 
to be {1 1 O} and not {1 1 1 }, and on the relations 
between stoichiometry and plastic behaviour, can 
be deduced which do not support all the preceding 
views. 

2. Experimental procedures 
Compression specimens 2.5 mm x 2.5 mm x 6 mm 
were cut with a diamond saw from a Verneuil 
grown single crystal of stoichiometry n ~ 1.1 pur- 
chased from Cristal-Tec/LETI (Grenoble). They 
contained only a few p.p.m, of impurities, princi- 
pally Ca 2 § and Fe 3 +. 

Specimens were then mechanically polished, 
and crept along the compression axis [00 1] at 
temperatures 1848 to 2003K, in air inside a 
graphite furnace. A constant load, 88.2 to 117.6 
MPa, was applied on a dead weight creep machine, 
of the type described in [5]. 

After creep tests, creep substructures were ob- 
served by BBT or TEM. All Berg-Barrett topographs 
were taken after polishing off the sample surfaces 
at about a lO0/~m depth, or after sawing inside the 
sample itself, to be representative of the bulk (for 
more details and the understanding of topograph 

contrast, see [5]). Thin foils for TEM were 
prepared by ionic bombardment and examined at 
100 kV. 

3. Experimental results 
3.1. Mechanical creep law 
Some creep curves are given in Fig. 1. Only 
nominal stress is kept constant during tests, 
because of the low strain values, and the unusual 
shape of crept specimens (inverted barrel). Some 
observation on e (t) curves deserve attention: 

(i) they do not show any transient creep, 
which would correspond to an initial decrease of 
strain rate. 

(ii) since the strain obtained under constant 
load is linear in time, under a constant true stress 
it would be slightly accelerated. What we observe 
in Fig. 1 is therefore only quasi steady state creep. 

(iii) the reproducibility of tests is poor, the 
strain rate being reproduced only within a factor 
two. 

These features are easier to understand as a 
pure climb strain, possibly nucleation-controlled, 
than as the usual glide strain process, controlled 
by propagation through obstacles. 

The observed creep rate is very low, smaller 
by a factor about 50 than creep under comparable 
conditions of samples with a different stoichio- 
metry, e.g. n = 1.8, as measured in [5] and [6]. 
However the Arrhenius plot in Fig. 2 shows this 
factor comes in pre-exponential terms only, and 
not in activation energies, the slopes being much 
the same. Thus, the creep law is found to be: 

= e0 (o//J) m exp (-- U/kT) (1) 

Figure l Creep curves for the 
[001] orientation at 117.6 
and 88.2 MPa for temperature 
change experiments. 
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Figure 2 Arrhenius plot of  creep rate versus T for stoichio- 
mett les  n = 1.1 (this work) and n = 1.8 (from [5] ). 

with m ~ 4 -+ 0.5 and U =  5.7 -+ 0.7 eV, as deter- 
mined by stress or temperature jumps (Ao = -+ 10 
MPa, A T =  -+ 15 K). These values are quite similar 
to corresponding figures found in [5] for the 
stoichiometry n = 1.8 : U = 5.3 -+ 0.5 eV and m = 
3.9-+ 0.3 (or also in [6] at higher temperatures). 
In the same trend, recent measurements by Ando 
and Oishi [8] of self-diffusion coefficients for 
oxygen ions (shown to be the slowest moving 
species in spinels) show no influence of stoichio- 
metry on diffusion parameters for n = 1 and 
n = 2.2. Therefore, it is clearly established that the 
large differences in creep strength are not related 
to hypothetical differences in self-diffusion pro- 
cesses. The same probably holds true also for any 
kind of high temperature mechanical strength, e.g. 
yield stress contrary to a number of previous 
suggestions [2, 4].  

A last observation is of interest, in connection 
with a possible climb strain process. While barrel- 
shaped samples are always obtained after com- 
pression in the case n = 1.8, with one of the 
transverse dimension kept unchanged (i.e. plane 
strain conditions), an unusual concave shape 
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(inverted barrel) is always obtained in the case 
r /=  1.1. Moreover, specimen sections are clearly 
widened in both of the transverse directions. 
Microprobe stoichiometry analysis gives nearly no 
variation of n across the sample (n = 1.1 -+ 0.I),  
ruling out any possible diffusion of alumina from 
the alumina buttons used to prevent indentations. 
This shape change can only be produced either by 
a rather difficult to accept multiple glide process, 
involving at least four intersecting active glide 
systems, or more plausibly by a diffusion climb 
process. At corners in particular, there may be 
vacancy concentration gradients stronger than 
elsewhere because of stress concentrations and/or 
the proximity of available surface diffusion sinks 
and sources; such gradients are expected to produce 
the kind of inverted barrel shape which is ob- 
served. 

3.2. Creep substructures 
Quite generally, slip substructures are difficult to 
observe after high temperature creep. In our case, 
strain rates are in the range t 0 -6 sec -1 so that it 
takes about 30h at 0.8 Tm to reach a 10% strain. 
It is clear that only recovery substructures, e.g. 
climb polygonization, can survive to such a long 
run [181. 

Whatever the creep mechanism, possible slip 
features can only be expected after a short creep 
time, i.e. a low creep strain. Therefore we present 
below two types of results: firstly, substructures 
left after less than an hour creep, corresponding to 
a 0.2 or 0.3% strain, and substructures left after 
a ten hour creep (or more), corresponding to a 
5 to 13% strain. 

3.2. 1. Shor t  time substructures 
After a 0.3% creep strain, Berg-Barrett topographs 
of the two side faces of the sample are quite 
similar. One of them is shown in Fig. 3a, where 
extinction contrast (locally, some displacement 
contrast too) features [1 00] lines (and [0 1 0] 
on the (1 0 0) face). TEM helps in interpretation 
of these lines (see below), but it is already clear 
that they cannot be compatible with any {1 1 1 } 
slip. Of course, it could be argued that no slip at 
all exists in our creep conditions. Nevertheless, we 
have observed such a (1 1 1} slip on topographs 
taken on similar samples, after similar creep strain 
and similar creep conditions but with a [I 1 0] 
compression axis which favours this slip over the 
{1 1 0} one (SFR = 1.64). This is shown in Figs. 3b 



Figure 3 (a) BBT of the (0 1 0) face of a [00 1 ] compression specimen with n = 1.1., after 0.3% creep strain at 107.8 MPa 
and 1853K. g = [6 6 0]. (b) BBT of the (00 1) face of a [1 10] compression specimen with n = 1.1. after 0.3% creep 
strain at 117.6 MPa and 1903 K. g = (4 04). (c) Same sample as (b). (1 ] 0) face. g = (4 04). Owing to the distortion the 
angle between the [1 1 2] direction and the [1 1 0] compression axis is 40 ~ 

and c for comparison. Therefore we think that slip 
does exist in the early stage of  creep we observe, 
and this slip cannot be of  the type {1 1 1 }. On the 
other hand, slip is specific to the very early stage 
and should not  develop much further than a few 
10 -3 strain (say, in the first creep hour) to 
account for the mechanical behaviour described in 
Section 3.1, and for observations of  the long time 
substructures. 

Samples deformed 0.2% under l l7 .6MPa at 
1848 K have been observed by TEM. Dislocation 
density is low, o f the order 101 x m-  2, but it consists 
of a number of long straight edge dislocations lying 
along [0 1 0] and [1 0 0] ,  quite frequently observed 
and homogeneously distributed throughout the foil 
(at this very small scale), as is shown typically in 
Fig. 4a. Their slip plane is observed to belong to 
the four most stressed {1 1 0} planes, giving thus 
strong support to a {1 1 0} slip. No evidence for 
{1 1 1 } slip is found either. This suggests that the 

above topograph (Fig. 3a) could represent the 
[1 00]  dislocation family, distributed as a series 
of  rough sheets at the sample scale (which is the 
BBT scale). Of course the other family, along 
[0 1 0] ,  is also present and should be in contrast 
for the topograph diffraction vector g = [6 6 0].  
Beneath the (0 1 0) face, and within the near 
surface region, say a few/~m thick, which is effect- 
ively diffracting, the short bits of [0 1 0] (1 0 1) 
sheets are viewed edge-on and are not distinguish- 
able from the [1 0 0] (0 1 1) sheets which lie in 
contrary to their full length along it. The only 

effect seen is the cusps (displacement contrasts) 
visible on [1 0 0] contrast lines. Only one family is 
clearly visible on each face: [1 00]  on the (0 1 0), 
[0 1 0] on the (I 0 0) face. 

The presence of these straight dislocations, re- 
latively widely spaced, has made it possible to 
determine unambiguously their dissociation plane 
by standard stereographic methods. Using weak 
beam images, it has been found they are dis- 
sociated into two collinear partials, of  Burgers 
vector 1/4 [1 0 1], in plane (1 0 1), i.e. normal to 
their slip plane. 

Let ~ be the apparent partial separation, as 
measured on the micrograph plane P, d the true 
dissociation width, dp the projection of  d onto P, 
and lp the unit line vector along the projected 
partials onto P. Let the angles ~b and X be defined 
as: ~b = (dp ,  lp), X = (d, alp). Simple geometry gives 
the relation: 

d = 6 (sin ~b cos X)- 1 

Apparent separations 6 are then carefully 
measured (using a microdensitometer) for a series 
of  weak beam images taken for various tilt angles 
(ranging between + 47 ~ and --41~ An example is 
given in Fig. 4b, where the partial separation 6 is 
about 8 nm. Special care is taken in keeping rigor- 
ously the same weak beam diffraction conditions 
and the same calibrated magnification on the 
microscope (M 19 on Philips E.M. 300) while tilting 
is performed. Weak beam geometry corresponds to 
that defined by Cockayne [9],  i.e. sg/> 0.2 nm- 1 
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Figure 4 (a) (1 00) section. Straight edge dislocations 
along [0 1 0] are characteristic of the creep substructure 
at 0.2% strain. Sample deformed at 1848K and 117.6 
MPa, with a [00 1] compression axis. (b) Partial separ- 
ation of an edge dislocation as in (a). 

and [sg ~gl >/5; we use g = [ 0 4 4 ] ,  with the bright 
Kikuchi line on [0 8 8] ,  that is: sg ~ 0.2 nm -1 and 
Isg~gl = 17 (~g = 8 5 n m  for [ 0 4 4 ] ) .  

The experimental plot of  6 versus the tilt angle 
0 is then compared to variations 6 (0) computed 
for various plausible dissociation planes, in zone 
with the line vector [0 1 0] .  Fig. 5 shows that only 
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the (10  1) plane fits the experimental data. This 
means that edge dislocations are dissociated not 
in their glide plane (which is (1 0 i-)) but in the 
plane perpendicular to their Burgers vector. This 
kind of splitting involves pure climb. At creep 
temperatures, it is obvious that a true equilibrium 
width can be reached. This one is found to be 
d--~ 10+_ l n m .  

The corresponding stacking fault, (1 01 )  1/4 
[ 1 0 1 ] ,  is obviously one of  the less energetic 
faults since not only it does not perturb the oxygen 
anion sublattice but it changes only one ionic 
plane (parallel to the fault) every two planes; 
moreover the two half crystals from each side of  
the fault plane are in a twin configuration. It has 
been predicted as the lowest energy fault by Van 
der Blest et  al., and observed by them in lithium 
ferrite spinel [10] ,  and by Veyssiere et  al. [11] 
who showed it should be particularly stabilized in 
inverse or cation disordered spinels, as can be ex- 
pected to occur in our high temperature case. 
Taking as the smallest lattice repeat period b 
0 .58nm,  the shear modulus ~ 1.18 x 10 s MPa, 
and the Poisson ratio p--~0.25, the measured 
width d corresponds to a stacking fault energy: 

7 = /~b/325 = 2 1 5 m J m  -2 

Predictions by Veyssiere et  al. [11] would give in 
our case 3' = 1 3 2 9 m J m  -2,  a number about 6 
times larger than the experimental value. 

To conclude this section, experimental evidence 
supports the following picture: in the very early 
stage of  creep, dislocations start bowing out under 
the applied stress and slip on the most stressed 
plane, (10  1)in our case, until they take on an edge 
character. Once edge, they become sessile by climb 
dissociation into two collinear partials so that they 
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Figure 5 (a) Experimental variation ~ (0) of partial separation 6 versus tilt angle (0). (b) Computed variations 6 (0) for 
various plausible dissociation planes: X (101); i (10 r ); o (100); �9 (001). Only the (101) plane fits the data. 
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Figure 6 Typical junctions found after 8% creep strain at 
T= 1943K and o = 88.2 MPa. (1 1 1) section. 

are blocked into long [0 1 O] straight segments, and 
slip ceases. Further creep occurs rather by climb, a 
strain process faster than slip since the latter could 
only be produced again either by activation of high 
energy constrictions along faulted ribbons, or by 
forcing gliding dislocations against a back stress of 
about 23'(1 o ~)5 >~ 2g/325 = 726 MPa. Observations 
of the long time substructures being further 
support of this view. 

3.2.2. Long time substructures 
Samples deformed 8% under 88.2MPa at 1943K 
have been observed by TEM. Dislocation density is 
low, about 1011 m -2, but at the scale of TEM 
almost no subgrain boundary is seen in the foil. A 
rather uniform distribution of attractive junctions 
is left, as shown in Fig. 6. Detailed stereographic 
identifications of the junction arms generally show 
that climb has occurred in order to reach a 120 ~ 
equilibrium configuration, so that the plane found 
for an arm and its Burgers vector is no longer any 
simple crystallographic plane. Thus only climb 
configurations appear as a general feature [18]. 

Berg-Barrett topographs, taken after 5% and 
13% creep strains ( T = 1 8 8 3 K ,  a = l l 7 . 6 M P a )  
are much the same and confirm, now at the sample 
scale, the complete absence of any creep cell 
boundary (see Fig. 7). Only some random subgrain 
boundaries are seen, locally crossed-over by a few 
thin, short, extinction contrast lines normal to 
compression axis. There are probably some erratic 
small groups of dislocations, connected to the 
nearby boundary (the source or obstacle for these 
dislocations), which may be retaining locally the 
strong (1 0 0) alignment described above. 

The lack of any cellular substructure here is in 
strong contrast with what is observed for the 

Figure 7 BBT of the (1 0 0) face after 
different creep strains at ll7.6MPa 
and 1884K. g= [440]. (a) 5% creep 
straim (b) 13% creep strain. 
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stoichiometry n = 1.8, where it is plausible that 
creep strain is mainly brought about by glide. If 
creep strain is due to climb processes, on the other 
hand, the building up of cell walls is not quite 
expected. 

4. Discussion. 
One of the major points to understand is the 
origin of the remarkable high mechanical strength 
of stoichiometric spinel, which is reflected here in 
the high creep strength. Creep rates as low as 
10- 6 sec- 1 are observed, although the temperature 
is about 0.8 Tm and the stress about 10 -3 ~. We 
think the low diffusion constant of the material is 
mainly responsible for this. In order to clarify this 
point, it is useful to compare present results and 
creep data for n = 1.8 found in [5] and [6] with 
high temperature creep of polycrystalline metals, 
as is shown in Fig. 8. Following the method of 
Mukherjee et al. [7] the dimensionless quantity 
ekT/Doxlab is plotted versus resolved shear stress 
cr//l. Here, the resolved shear stress is taken as 
half the load, and the self-diffusion coefficient 
Dox is taken from that measured by Ando et al. 
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Figure 8 Normalized creep rates versus resolved shear 
stresses (half of the load). Straight lines stand for high 
temperature creep data of polycrystatline metals, as 
quoted in [7]. []creep of n = 1.1. crystals, this work; 
/x creep of n = 1.8 crystals [6] above 1793 K, and O below 
1793K [5]. 1793K is the thermodynamic exsolution 
temperature of AI~ O 3. 

[8] for oxygens ions, since they are probably 
the slowest moving species, i.e. rate-controlling, in 
spinels. Fig. 8 shows that the creep strength of 
spinels is a matter of diffusion constant only, this 
parameter retaining all the pecularities due to 
electronic Structure. In other respects, the creep 
behaviour, when properly normalized, is found 
to be quite comparable to more usual materials. 
Therefore, instead of Equation 1, the creep law 
can be written as 

= A (olli) m Dox t lb lkT  (2) 

where A and m are dimensionless quantities, and 
to a first approximation depend only on stoichio- 
metry. The investigated ranges in stress and 
temperature are too small to give a precise deter- 
mination of A and m, but m values found in 
Section 3.1. are consistent with the present plot. 

Another point is made apparent from Fig. 8, 
concerning the stoichiometry effect. It is clear that 
the factor A becomes at least 10 times larger as n 
increases from 1.1. to 1.8. We propose that this 
difference can be rationalized in terms of stacking 
fault energy. Note, for example, that data for 
n = 1.1. fall on line with straight segments ob- 
tained for metals like Ag, Zn, Cd, which are 
known to have relatively wide split dislocations 
with stacking faulr energy of the order of 3' ~ 
pb/400 [7, 12, ! 3], while data for n = 1.8 fall 
rather on line with nickel, for which 3 '~pb /100  
[7]. At this point we do not claim that there is a 
straightforward relationship between A and 3'. It 
could just be, for example, that metals of the first 
group have, because of dissociation, their slip in- 
hibited either as in silver, because of Lomer- 
Cottrell barriers, or as in zinc or cadmium poly- 
crystals, because of sessile splitting of dislocations 
on needed prismatic or pyramidal slip systems [ 12]. 
Such situations bear some resemblance to the 
occurrence of sessile dislocations as observed 
above: Conversely, dislocations in metals like 
nickel can slip more easily. Similarly the preceding 
sessile splitting might not occur either in n = 1.8 
spinels, which seems to be indicated by published 
works [3, 17]. However no precise stereographic 
determination of fault plane has been carried out 
yet; the authors plan to investigate this point 
further. 

In order to account for the effect of stoichio- 
merry on A, let us start from the Orowan creep 
equation: 
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= p b ( L I h ) v c  (3) 

where p is the dislocation density (p ~ (cr//~b)2), L 
the slip distance of a freed dislocation, h the 
distance to climb in order to free a dislocation and 
vc the climb velocity. Since stoichiometry in- 
fluences only pre-exponential terms like pL/h ,  we 
suggest making L = h in the case of n = 1, owing 
to the inhibition of slip by splitting, making the 
creep strain a pure climb strain. For n = 2 creep is 
a climb-controlled glide process, so that L >> h, 
with L being the creep cellular size, for example, 
as proposed in [5]. 

Order of magnitude agreements support this 
view. The usual expression of climb velocity gives 
here: 

ve = 2rib (-- in (2bp112)) -1 (Doxtlb/kT)(u/t l)  

(4) 
Taking the material parameters as previously 
evaluated, a as the resolved stress (59 MPa), and 
D o x  ~" 10  -16 m 2 sec -I at T =  1920K [8], yields 
Vc = 200pmh -1 = 5.6 x 10 -8 msec -1. With the 
measured dislocation density p ~ 1011 m -2, e = 
pbve = 3 x 10-6 sec-1. This is just what is read 
on experimental data (Fig. 2), for the load of 
117.6 MPa. Of course, such perfect fit is some- 
what fortuitous, due to the rusticity of model, 
but the order of magnitude agreement shows that 
pure climb strain can account quantitatively for 
experimental rates. 

Alternatively, if it is accepted that p varies as 
the square of stress, it is clear that a rate equation 
such as Equation 2 can be predicted with rn = 3. 
Fig. 8 gives then A ~0 .1  for n = 1.1. This ex- 
perimental value compares well with theoretical 
models of pure climb creep, e.g. Nabarro's model 
[141 (A = [zrln(p/4o)]-I --~ 0.05) or Weertman's 
model [15] (A = 0.3 for p = (o/lab)2). However it 
should be emphasized that two patameters are 
somewhat outside the present experimental 
precision. Firstly, the experimental stress de- 
pendence of creep rate scatters in the range 3 to 4.5, 
and seems to be slightly larger than 3. Secondly, 
the experimental creep energy scatters in the range 
5 to 6 eV, again slightly larger than the published 
diffusion energy for oxygen, which is about 4.6 eV 
[8]. In cases where such differences would really 
exist (but diffusion measurements are obtained 
by the not very precise technique of gas-solid 
exchange utilizing 1~0 as a tracer), they are 
balanced by the theoretical coarseness of pre- 

dictions relative to dislocation climb behaviour, so 
that they cannot be taken, for the time being, as 
serious objections to our model. 

Our interpretation of the effect of stoichiometry 
on spinel plasticity is thus fundamentally based on 
different splitting behaviours, at least as a tentative 
suggestion which needs further observation. Of 
course, when compared to other interpretations 
[ 2 M ] ,  it is of interest to recall that our exper- 
imental conditions (strain rates in the range 10 -6 
to 10 -7 sec-1, resolved shear stresses in the range 
0.38 to 0.50 x 10 -3 #) locate our investigation in 
the region of a deformation map controlled by 
dislocation climb, as opposed to the "dislocation 
glide" region designated by Radford et al. [2] and 
Mitchell et al. [4]. It is therefore clear that the 
dislocation behaviour we observe might concern 
only processes-deformation mechanisms, pre- 
ferred slip sy s t em -  which could be strictly ap- 
propriate for the special preceding conditions. For 
the other cases however, i.e. the high stress/strain 
rate region, we speculate that the above inter- 
pretation might still hold and propose a way to 
explain various published observations [3, 4, 16, 
181. 

Mitchell et al. [4] have produced 650kV 
electron micrographs from a sample strained 
0.25% on (1 1 1) slip plane (SFR = 1.43) at 2070 
to 2170K and a constant strain rate 10 -4 sec -1. 
Long, straight, edge dislocations similar to the 
ones we characterized in Fig. 4, are clearly shown 
(Figs. 3c and f in [4]) but without a precise 
stereographic identification of dissociation plane. 
We suggest these might be the remaining, sessile 
split dislocations developed during early slip in the 
pre-yield stage and causing harder and harder 
glide sources to be activated. Hence the slip lines, 
high dislocation density and work-hardening rate 
they observe in this stage could be explained. This 
exhaustion mechanism lasts until stress is high 
enough to accomodate the imposed strain rate by 
a climb process only at the test temperature. Once 
climb has started, dislocations are no longer lying 
in their slip plane, so that no further glide is 
possible. Then another (post-yield) deformation 
stage - a climb stage - takes place. A number of 
authors [3, 4, 18] have reported that dislocations 
were rarely observed to lie in well-defined slip 
planes, in agreement with the preceding view. 
According to Mitchell et al. [4] "climb into lower 
energy configurations" is occurring under their 
deformation conditions. They find pieces of crude 
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dislocation network "with a tendency toward a 
hexagonal character" quite similar to the 120 ~ 
junctions formed by climb, as in our Fig. 6. As a 
r.esult ;,: climb ~ redaees~, the ~ high' dislocation ;~density 
accumulated during the pre-yield stage (softening, 

as suggested in [4]) ,  down to values [16] similar 
to the ones we report  in this paper. For such 
values, extrapolating our data in Fig. 2 shows that 
strain rates of  the order 10 -4 sec -1 can be ex- 

pected in their conditions (2100K,  172MPa). 

Similarly applying Equations 3 and 4 with L = h 
(pure climb strain), p -~ 1011 m -2 , Dox ~ 2 x 
10 - l s m  2sec -1 at T = 2 1 0 0 K [ 8 ]  and ~ = 1 7 2  
MPa, one computes 6~-- 1.84 x 10 -4 sec -1 to be 
compared with their data, 1.4 x 10 .4 sec -1 

Moreover, recent precise determination of  the dis- 
sociation plane performed in this post-yield stage 
(done on junction arms) show it again distinct 
from the slip plane [16] ,  the two partials climbing 
in a way somewhat uncorrelated. 

Summarizing, from our creep data we present 
a deformation picture of  stoichiometric spinel in 
two stages: a first pre-yield slip, followed by  a 
post-yield climb mechanism which develops from 
sessile split dislocations. It is not  unreasonable to 
extend it to more general mechanical behaviour, at 
leat as a model  designed to stimulate further ob- 
servations and to achieve a bet ter  understanding of  
s toichiometry effects. 

In particular we would not  consider {1 1 1} 
(1 ]-0) slip as the prevailing easiest slip system for 

n = 1, as it  is stated in the literature [2, 4] from 
limited stress orientation data. We have investigated 
for the first time the orientation [00 1] and 
shown conclusively from our work that  only 
{1 1 0} (1 ]-0) slip is activated. On the other hand, 
{1 1 1} (1] -0)  slip is observed for comparable 
conditions for the [1 1 0] stress orientation, in 

agreement with Schmid's law. The fact that {1 1 0} 
slip is chosen over the {1 1 1} slip for Schmid 
factors of  0.5 and 0.41 respectively (ratio 1.22), 

..... shows that'qat~ice slip resistance (Peiefls forces) on 
{11 1} planes should not  be much smaller than 
on the {I 1 0} planes, at most  within about  20%, 
contrary to proposals made up until now [ 2 - 4 ] .  
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